MAKINDU DISTRICT INTER – SECONDARY SCHOOL EXAMINATION 2014 233/3 CHEMISTRY PAPER 3 CONFIDENTIAL INSTRUCTIONS TO SCHOOLS

In addition to the fittings and apparatus in a chemistry laboratory, each candidate will require the following

- A burette
- A 25cm³ pipette
- A pipette filler
- 2 conical flasks
- Distilled water in a wash bottle
- A stand and a clamp
- 150cm³ of solution A
- 100cm³ of solution B
- 80cm³ of solution C
- Boiling tube
- 6 dry test tubes in a rack
- Test tube holder
- Metallic spatula
- 0.5g solid E
- About 2g solid F
- 5mls liquid K ACCESS TO
- Methyl orange indicator
- 2M sodium hydroxide solution
- Aqueous ammonia (2M NH_{3(aq)})
- 0.5M lead nitrate solution
- Acidified KMnO₄
- Acidified $K_2Cr_2O_7$
- Sodium chloride solution

NOTES

- 1. Solution A is prepared by adding 12.9cm³ of concentrated hydrochloric acid (specific gravity 1.18) to 600cm³ of distilled water then top up to one litre
- 2. Solution B is prepared by dissolving 4g of sodium hydroxide in 600cm³ of distilled water then top up to one litre.
- 3. Solution C is prepared by dissolving a mixture of 8.4g of sodium hydrogen carbonate and 1.6g of sodium chloride is about 600cm³ of distilled water and then top up to one litre.

INDEV NO SIGNATUDE	

233/3 CHEMISTRY PRACTICAL PAPER 3 JULY/AUGUST, 2014 TIME: 2¹/₄ HOURS.

MAKINDU DISTRICT INTER – SECONDARY SCHOOLS EXAMINATION

Kenya Certificate of Secondary Education.

233/3 CHEMISTRY PAPER 3 PRACTICAL TIME: 2¹/₄ HOURS.

INSTRUCTIONS TO CANDIDATES.

- Write your name and index number in the spaces provided above.
- Sign and write the date of exam in the spaces above.
- Answer ALL the questions in the spaces provided.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2¹/₄ hours allowed time for the paper.
- Use the 15 minutes to read through the question paper and note the chemicals you require
- Mathematical tables and electronic calculators may be used.
- All working **MUST** be clearly shown where necessary.
- This paper consists of 6 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR EXAMINER'S USE ONLY.

Question	Maximum score	Candidate's score
1	18	
2	12	
3	10	
Total score	40	

© 2014, Makindu district inter - secondary schools examination

233/3 Chemistry Practical

Question 1

You are provided with:

- Dilute hydrochloric acid solution A
- 0.1m sodium hydroxide solution B
- 10g of a mixture of sodium hydrogen carbonate and sodium chloride per litre, solution C

You are required top determine;

- (i) Molarity of solution A
- (ii) Percentage purity by mass of sodium hydrogen carbonate

PROCEDURE 1

Fill the burette with solution A. Pipette 25cm3 of 0.1M sodium hydroxide solution B into a clean conical flask and add 2 drops of methyl orange indicator and titrate with solution A until a permanent pink colour occurs. Fill in the table below. Repeat the titration two more times and complete the table below.

TABLE I

		1	2	3
]	Final burette reading (cm ³)			
]	Initial burette reading (cm ³)			
7	Volume of solution A used (cm ³)			
(a) C	alculate the average volume of solution A used.			(4 Marks) (1 Mark)
 (b) C hi	alculate the number of moles of hydrochloric acid so ydroxide solution B.	olution A the	at reacted with 25ci	n3 of sodium (2 Marks)
 (c) C 	alculate the concentration of solution A in moles per	r litre		(1 Mark)

PROCEDURE II

Pipette 25cm3 of solution C into a conical flask, Titrate with solution A using 3 drops of methyl orange indicator. Record your results in table II below. **TABLE II**

	1	2	3
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution A used (cm ³)			

(4 Marks)

(a) Calculate the average volume of solution A used. (1 Mark) (b) Write an ionic equation for the reaction taking place between solution A and mixture C. (1 Mark) (c) Calculate: (i) Molarity of sodium hydrogen carbonate in moles per litre (2 Marks) (ii) Mass of sodium hydrogen carbonate in moles per litre (1 Mark) (iii) Mass of sodium chloride in the mixture (1 Mark)

- 2. (I) You are provided with solid F. Carry out the following tests and write down all the observations and Inferences.
 - (a) Place half spatula end full of solid F in a dry test tube. Heat gently then strongly until there is no further change. Test gas using a glowing splint.

Observations	Inferences
(1 mark)	(1 mark)

(b) Place the remaining solid F in a test tube, add about 10cm³ of distilled water and shake vigorously. Divide the mixture into three portions.

(i) To the first portion, add 2M sodium hydroxide solution drop wise until in excess.

Observations	Inferences
(1 mark)	(1 mark)

(ii) To the 2nd portion, add ammonia solution dropwise till in excess.

Observations	Inferences
(1 mark)	(1 mark)
(iii) To the 3 rd portion add 4 drops of solution chl	oride
Observations	Inferences
(1 mark)	(1 mark)

II

You are provided with liquid K, carry out the following tests on it.

(2	a)	Place about one s	patula end full of light	quid K on a metallic si	patula and ignite it in a	Bunsen burner flame.
· · ·	·• /					

Observations	Inferences	
	(1 mark) (1 mark)	

(b) To 2cm3 of liquid K add 3 drops of acidified $KMnO_4$ solution.

	Observations	Inferences
	$(\frac{1}{2} \text{ mark})$	(½ mark)
(c)	To 2cm3 of liquid K, add 3 drops of acidified K ₂ C	r ₂ O ₇ .
	Observations	Inferences

- 3. You are provided with solid E. Carry out tests below. Record your observations and inferences in the spaces provided.
 - (a) Put about one half of solid E in a dry test tube and heat it strongly. Test for any gas produced using litmus paper.

Observations	Inferences
(2 mark)	(2 mark)

(b) Dissolve the rest of the solid E in 10cm3 of distilled water in boiling tube. Divide solution into 3 portions.

(i) To a first portion in test-tube, add aqueous sodium hydroxide dropwise until in excess.

Observations	Inferences
(1 mark)	(1 mark)

(ii) To the second portion in test tube, add aqueous ammonia solution dropwise until in excess.

Observations	Inferences
(1 mark)	(1 mark)

(iii) To the third portion in a test-tube, add lead (II) nitrate solution and then warm the mixture.

Observations	Inferences
(1 morte)	(1 mod)
(1 mark)	(I IIIdIK)

MAKINDU DISTRICT INTER – SECONDARY SCHOOLS EXAMINATION

Kenya Certificate of Secondary Education 233/3 CHEMISTRY PAPER 3

1. Procedure 1

Table 1

Table 1	Ι	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution A used (cm ³)			

Complete table \checkmark (1mk)

Penalize to a maximum of 1/2mk for

- Inverted table
- Wrong arithmetic
- Burrette readings beyond 50cm³ except where explained
- Unrealistic titre values (below 1cm³) and above 50cm³

Use of decimals \checkmark (1mk)

- Accept for 1mk;
- One decimal or 2 decimal places throughout otherwise penalize fully
- If 2 decimal places are used; the second digit after the decimal is either '0' or 5 otherwise penalize fully.

Accuracy

Compare with the school/ teachers titre values if any

- Within ± 0.1 of T.V $\sqrt{1/2}$ mk
- Within ± 0.2 of T.V $\sqrt{1/2}$ mk
- Non-within ± 0.2 of each other T.V \checkmark (0mk)

Averaging

- If 3 averaged and within ± 0.2 of each other $\sqrt{(1mk)}$
- If 2 averaged and within ± 0.2 of each other $\sqrt{(1mk)}$
- Averaging outside the range⁺0.2 (1mk)

PROCEDURE I

TABLE I

a) Average volume of solution A	$=\frac{3 \text{ titre values within}^+_{-}0.2}{3} \checkmark \frac{1}{2} \text{ mk}$
	=correct answer ✓ ½ mk
or	$\frac{2 \text{ titre values within \pm 0.2}}{2} \sqrt{\frac{1}{2}} \text{ mk}$
	Confect answer v 72 mk
b) Moles of solution A used	
0.1M NaOH →	$0.1 \text{ moles in } 1000 \text{ cm}^3$
(1000 - 3 - 0 - 1 - 1 - 1)	1.

0.1M NaOH \longrightarrow 0.1 moles in 1000cm³ if 1000cm³=0.1moles $\checkmark^{1}/_{2}$ mk 25cm³= ? $\frac{25cm^{3}}{1000}x0.1moles = 0.0025 \checkmark \frac{1}{2}$ mk NaOH_(aq)+HCl_(aq) \longrightarrow Na Cl_(aq)+H₂O₍₁₎ mole ratio base: Acid=1:1 \checkmark $\frac{1}{2}$ mk Mole of HCl solution A that reacted with NaOH=0.0025 \checkmark $\frac{1}{2}$ mk c) Concentration of solution A in moles per litre.

=Ans(a) contains 0.0025 moles (Ans b) $\sqrt{\frac{1}{2}}$ mk

 $1000 \text{cm}^3 = ?$

$$=\frac{1000cm^3}{Ans(a)} \times 0.0025 \text{ moles}$$

Correct answer. $\checkmark \frac{1}{2}$ mk

Procedure II

Table 2	Ι	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution A used (cm^3)	16.0	16.0	16.0

a) Average of volume of solution A

 $=\frac{3 \text{ titre values within}^+ 0.2}{3} \checkmark \frac{1}{2} \text{ mk}$

correct ans $\sqrt{1/2}$ mk

b)
$$H^+_{(aq)} + HCO_3^-_{(aq)} \longrightarrow H_2O_{(l)} + CO_{2(g)} \checkmark (1mk)$$

c) i) Morality of sodium hydrogen carbonate in mols/l

Moles of solution A used = $\frac{ans(c)procedure 1xans(a)procedure II}{1000} \sqrt{\frac{1}{2}} \text{ mk}$

Mole ratio acid: Hydrogen carbonate

1:1

Moles of sodium hydrogen carbonate solution C used $\frac{Ans(c)procedure Ix Ans (a)procedure II}{1000} \checkmark \frac{1}{2} \text{ mk}$

Therefore

Molarity of NaHCO₃ = $\frac{1000xans(c)procedure Ix ans (a)procedure II}{1000x25} \checkmark \frac{1}{2} \text{ mk}$ $= \frac{Ans.(c)procedure I x Ans (a)procedure}{25}$ $= \text{Correct answer } \checkmark \frac{1}{2} \text{ mk}$

Procedure II

c) ii Mass of sodium hydrogen carbonate in moles/l RMM of NaHCO3=23+1+12+(16x3) =36+48 =84 .:, Mass of NaHCO₃ in the mixture in grammes per litre

- = 84x ans (c) (i) $\sqrt{\frac{1}{2}}$ mk
- = correct answer $\sqrt{\frac{1}{2}}$ mk
- iii) Mass of NaCl in the mixture
- = 10-ans (c ii) $\sqrt{\frac{1}{2}}$ mk
- = Correct Ans $\sqrt{1/2}$ mk

iv) % purity of NaHCO₃ =
$$\frac{ans (c \, ii) x 100}{10} \sqrt{\frac{1}{2}} mk$$

Qn2. I

a) Observations	Inference
 Colorless liquid forms on cooler sides of test tubes Colorless gas produced which relights a glowing splint Each 1/2mk max 1 	Solid F is hydrated $^{1}/_{2}mk$ NO ₃ ⁻ ions present $^{1}/_{2}mk$

b) Observation	Inference
i) White ppt $\sqrt{1/2}$ mk	Al^{3+}, Zn^{2+} or Pb ²⁺ ions present 1mk for 3 cations, $\frac{1}{2}$ for
ii) White ppt $\sqrt{\frac{1}{2}}$ mk	3cations 0mk for cat ion
insoluble in excess $\sqrt{1/2}$ mk	Al^{3+} or $Pb^{2+1}/_2mk$ present
iii)No white precipitate formed 1mk	Al ³⁺ present $\sqrt{1/2}$ mk or Pb ²⁺ absent $\sqrt{1/2}$ mk

Π

a)Burns with a blue smokeless flame (1mk)	Saturated organic compound or hydrocarbon with low C:H ratio or $-C - C - \sqrt{(1mk)}$
b) Purple KMnO ₄ turns colorless ½ mk	$ \begin{cases} \text{R-OH or} \\ \text{C} = \text{C}' & -\text{C} = \text{C} \end{cases} \sqrt{\frac{1}{2}} \text{ mk} \end{cases} $
c) Orange $K_2Cr_2 O_7$ turn green $\frac{1}{2}$ mk	R-OH present $\sqrt{1/2}$ mk

Q3.

a) Observation	Inference
 Colourless liquid form√¹/₂ mk Vapour condenses on cooler part of test tube ¹/₂mk Red litmus remains red¹/₂mk Blue litmus turns red 	Contains water of crystallization Hydrated salt $\sqrt{\frac{1}{2}}$ mk Acidic gas $\sqrt{\frac{1}{2}}$ mk ZnO
 Yellow solid when hot white when cold ✓ ¹/₂ mk Reject water forms 	

b) Observation		In	ference
White ppt $\sqrt{1/2}$ mk		Pl	$p^{2^{+}}, Zn^{2^{+}}, Al^{3^{+}}$ present
Dissolve in excess $\sqrt{1/2}$ mk			
	3 ions	1mk	
	2 ions	½ m	k
	1ions	0mk	
c)Observation		In	ference
– White precipitate $\sqrt{1/2}$ mk		Zi	n ²⁺ present
- Dissolves in excess $\sqrt{1/2}$ mk			

Award zero for any contradictory ion.

d) Observation	Inference
- White $ppt \sqrt{1/2}mk$	Cl ⁻ present
- Dissolves on warming $1/2$ mk	

Any contradictory ion award zero.